Effectiveness Information Communication Technology In Controlling Epidemic Size: Empirical Study

Hala A. Albaroodi¹*, Khansaa Albaroodi², Ghada Jalal Jawad³ and Baida Salman Abdali⁴

*¹ Senior Lecturer at Gifted guardianship committee, in Ministry of Education, Baghdad/Iraq.

² Senior Lecturer at Alzarrawi University College, Najaf Highway, 56001, Karbala, Iraq.

³Baghdad University, College of Education for Women, Baghdad, Iraq.

⁴ University of Baghdad, College of science, computer.

Abstract

The paper aims at explaining empirically timing and intensity of a user's adoption of Information and Communication Technologies (ICT) using a large sample of users. The analysis is based on the rank and the epidemic technology adoption. The explanatory variables include many dimensions of anticipated benefits from trust and shared value of the epidemic technology adoption, what allows capturing the impact of uncertainty and adjustment. The analysis yields results pertaining to the timing and the intensity of the epidemic technology adoption intra user's diffusion. Notwithstanding some interesting differences, we find quite a robust pattern of explanation across the adoption variables used. An extended version of the approach explores the role of “World Health Organization” (WHO) as a determinant of the adoption of ICT, as well as the reverse relationship, i.e. the impact of ICT on the adoption of WHO.

Keyword: Cronbach's Alpha, Information Communication Technology (ICT), the epidemic technology, World Health Organization” (WHO).
1. Introduction

Information and Communication Technologies (ICT) is an innovative and constantly growing technology that allows internet users to access their data via the use of internet without having an arsenal of sophisticated computers and professional operators. This technology provides an elastic capacity to serve a wide and continuous expanding range of information processing needs, which include government, military, business and education. ICT, however, is commonly known for its diverse glitches which include ICT security and ICT lack of customization options. These shortcomings are tackled via the use of ICT with controlling epidemic size [1-3]. ICT controlling epidemic size system are characterized by having an obtainable source code, thus, allowing for immediate and simultaneous incorporation of improvements and adoptions of the ICT controlling epidemic size system by third-party developers, facilitating the branching of the ICT into customized variants, and allowing clouds to be deployed for any type of application domain. This ICT controlling epidemic size system created a new breed of ICT [29].

In Iraq, the usage of ICT is limited in the open literature because only a few studies have been dedicated to this subject. Although few investigators made attempts to tackle this subject specifically and the usage of information technologies in general, extensive research work is still needed for a better understanding of this new type of distribution channel. Among these investigators, [4] focused on the impact of perceived usefulness and perceived ease of use on information systems used in small and medium people groups in Iraq. [5] Focused on the intention to purchase via the Internet and compared two theoretical models: TAM and a Theory of Planned Behavior (TPB) Model. [6] Investigated the technology changes over a period of time and the influence of perceived usefulness and perceived ease of use on usage behavior over three time periods.

Therefore, the need for an additional contribution, especially in the field of ICT, is still present in Iraq. A review of the available published studies in open literature sources has revealed the existence of research in which investigators studied the influence of consumer demographics and consumer purchase preferences on attitudes toward using online shopping and online shopping decisions [7]. [8] Investigated the effect of perceived usefulness and perceived ease of use on attitudes toward using technology and on intentional behaviour (“TAM theory”). In addition, [9] has studied the influence of the access cost of using Internet technology on attitudes and behaviours toward online shopping. [10] Have studied the influence of the perceived financial cost on the intentional behaviour of using mobile banking. Accordingly, several researchers have studied TAM theory. Emerging infectious diseases such as influenza A/H1N1 serve as a chilling reminder of the stakes at play when trying to govern for sustainability in settings where system complexity is vast, uncertainties are chronic, and surprises are recurring. Information and communication technologies already play a key role in responding to these challenges. They facilitate the extraction and integration of early warnings, reduce the cost of information
dissemination and coordination in networked settings, and help build institutional capacity to reduce human health risks.

The need for early and reliable warning of pending infectious disease outbreaks has been a major concern for the global community since the creation of the first international health regulation in the mid-nineteenth century, when cholera epidemics overran Europe. Recent advancements in information and communication technology are fundamentally improving the potential to detect surprising disease outbreaks. The Internet giant Google, for example, had one of its biggest public relations successes during 2008 and 2009 with its tool Google Flu Trends, a software that uses saved online search queries such as “fever” or “sore throat” to predict the emergence of a flu outbreak up to two weeks before government epidemiologists.18 In addition, The New York Times, The Guardian, the Financial Times, and Wired recently featured the use of a new generation of monitoring systems with the ability to transform the chaotic chatter on the Internet into “infoveillance,” early warning signals of pending infectious disease outbreaks.19

In addition, World Health Organization” (WHO) might be expected to be one step ahead of its member countries due to its resources and global perspective, But WHO’s early warning capacity is in fact the result of a profound transformation in global health governance over the last decade. The use of Internet based and other “unofficial” information by international organizations would not only have been technically infeasible 10 years ago but also would have treaded controversial legal terrain [31,32].

However, no study has been conducted on an extension of this theory in the ICT controlling epidemic size system [30] context by examining the impact of trust and shared values on the attitude and intention to use ICT controlling epidemic size system for information’s and news in Iraq.

To summarise this problem, we ask the question: what are the impacts of perceived usefulness, perceived ease of use, and perceived risk on the attitude and intention to use ICT controlling epidemic size system without a moderator variable and with the moderator (Trust and shared value) for products and services in Iraq? By conducting a study and proposing a model, we look at the solutions that are helpful to the ICT controlling epidemic size system, the Iraq government’s that offer internet services in Iraq with a secure and trusted environment (For Iraqi internet customer review regarding elements of the exploratory study).

This study identifies ICT users. To identify methods to promote the use of ICT controlling epidemic size system, a questionnaire was designed, developed, and tested. This study also
providing the proposed framework and hypothesis for ICT controlling epidemic size system in Section 2. Section 3 describes the method, and Section 4, 5 presents the results and discussion. Finally, Section 6 concludes the paper.

2. Framework and hypothesis

In contrast to WHO’s response to the A/H1N1 pandemic, the bubonic plague outbreak in Surat illustrates a serious failure of the WHO to deal with epidemic emergencies. One of the main reasons for the failure in Surat was that WHO’s information system, then based entirely on phones and fax machines, collapsed under the pressure of a rapidly escalating number of requests from journalists, governments, and concerned citizens. In addition, while WHO did not have staff in place in Surat, global media such as BBC did and could rapidly broadcast images of the unfolding crisis. The WHO coordination center based in Geneva, despite repeated demands from a range of public and private actors, could do little more than wait for official reports from the affected country. Bearing in mind the international media coverage, the failure for WHO could not have been worse from a public-relations perspective. WHO’s authority to handle international health threats continued to be questioned in the aftermath of repeated epidemic emergencies such as the 1995 Ebola hemorrhagic fever outbreak in Kikwit (Zaire), the 1997 outbreak of Rift Valley Fever in eastern Africa, the intentional spread of anthrax in the United States in 2001, and the global spread of SARS in 2003. A new generation of disease-surveillance systems based on e-mail and the Internet nevertheless seem to have helped WHO reinforce its leadership role in global health governance.

Reflected on the implications of ICT monitoring systems for WHO operations: All of a sudden, we had a very powerful system that brought in much more information from more countries. And we were able to go to countries confidentially and validate what was going on, and if they needed help, we provided help. And we provided help by bringing together many different institutions from around the world that started to work with us. WHO’s use of ICT unofficial data may represent a fundamental shift in global health governance. The older (pre-Internet) model was built explicitly on respecting the information authority of member countries.

The hypotheses of this study are developed based on a conceptual framework and are intended to investigate the research objective. An appropriate model is the “TAM model” to examine the end users’ acceptance of ICT controlling epidemic size system. A TAM model has been found that has a significant positive influence between the perceived ease of use and the perceived usefulness. Furthermore, the perceived ease of use and perceived usefulness have a significant positive relationship with respect to the attitude toward ICT controlling epidemic size system;
the following hypotheses (H1–H6) were adopted from the original TAM and other research papers [8, 11-14] and are shown in Fig. 1.

Fig.1. A model for ICT controlling epidemic size system adapted and relationship representation from [8], perceived risk [11], trust [14], shared value [13]

H1. Perceived usefulness has a significant positive influence on perceived ease of use.

H2. Attitude toward using ICT controlling epidemic size system mediates the relationship between the independent variables (IV) and the dependent variable (DV) (intention to use ICT controlling epidemic size system).
- Perceived ease of use will have a positive effect on attitude toward using ICT controlling epidemic size system.
- Perceived usefulness will have a positive effect on attitude toward using ICT controlling epidemic size system.
- Perceived risk will have a positive effect on attitude toward using ICT controlling epidemic size system.

H3. Attitude toward using ICT controlling epidemic size system has a significant positive influence on the dependent variable (DV) (intention to use ICT controlling epidemic size system).

H4. Trust moderates the relationship between the independent variables (IV) and the dependent variable (dv) (intention to use ICT controlling epidemic size system).
• The positive effect of perceived ease of use on attitude towered using ICT controlling epidemic size system will decrease with the increased trust.
• The positive effect of perceived usefulness on attitude towered using ICT controlling epidemic size system will decrease with the increased trust.
• The positive effect of perceived risk on attitude towered using ICT controlling epidemic size system will decrease with the increased trust.

H5. Shared value moderates the relationship between the independent variables (IV) and the dependent variable (DV) (intention to use ICT controlling epidemic size system).

• The positive effect of perceived ease of use on attitude towered using ICT controlling epidemic size system will decrease with increased shared values.
• The positive effect of perceived usefulness on attitude towered using ICT controlling epidemic size system will decrease with increased shared values.
• The positive effect of perceived risk on attitude towered using ICT controlling epidemic size system will decrease with increased shared values.

3. Method

The nature of this study is to validate the conceptual model and the proposed hypotheses. Thus, a quantitative research design is chosen for principal component analyses and hypotheses testing. The type of investigation is a correlation study that attempts to explain the variation in the dependent variable, which is (intention to use ICT controlling epidemic size system) supported by three independent variables: the perceived ease of use, perceived usefulness, and perceived risk. The attitude toward using ICT controlling epidemic size system will be the mediating variable between the independent variables and the dependent variable. The trust and shared value will be the moderating variable between the independent variables and the dependent variable.

The ideal number of respondents to an academic study is twenty times the number of variables. Because the number of variables for this study is seven, it is, therefore, expected that the number of responses should be at least 140 [15,33]. Thus, by using the simple random sampling method, a list of names of ICT controlling epidemic size system users is not necessary. Referring to [16] provided a significant guideline for the sample size decisions. Therefore, the target number of questionnaires that must be collected is 394.
The measurements of the variables in this study represent the scale items for each construct that is to be measured. The theoretical model for this research is represented by seven variables: three independent, one mediating, two moderating and one dependent variable.

These variables are the perceived ease of use (independent variable), perceived usefulness (independent variable), perceived risk (independent variable), attitude toward using ICT controlling epidemic size system (mediating variable), trust, shared value (moderating variable), and intention to use ICT controlling epidemic size system (dependent variable). This section will provide a discussion that is related to the scales and its items, which is to be employed in the measurement of all of those constructs (for more on the scales of measure and their pilot testing [17].

4. Results

The potential benefits of emerging networks in global health governance should not be underestimated. Not only do they bring together actors normally separated by geographical boundaries, sector segmentation, and different knowledge bases (for example, veterinary medicine and epidemiology), they also facilitate the provision of staff and resources when prompt ICT and response is needed. However, ICT health governance strategy does not come without trade-offs and is not without weaknesses.

All networks are not created equal. On the contrary, the specific structure of networks plays a fundamental role in their ability to deal with changing circumstances and shocks. Organizational networks risk two types of possible failures. The first has been described as congestion related failure and emerges when the top level of a hierarchical network is unable (or uninterested other nodes (actors) in the network.30 The failure of the WHO to rapidly verify and disseminate information about the 1994 bubonic plague outbreak in Surat is a good example.

The second type of failure is related to the network’s ability to function in the face of random collapses in its nodes. This sort of robustness is of particular interest in cases where a minor collapse could have severe system impacts. Criminal and terrorist networks, natural resource management networks, and critical infrastructure such as transport networks are all examples of structures where targeted or random failures can have system-wide effects. Hence, even though networked forms of governance can be seen as a fruitful strategy for overcoming coordination challenges, their robustness can never be taken for granted.

Not all important driving forces for emerging networked forms of governance are related to developments in ICT, but rather to scarce financial and human resources. Only a minor share of the total of public and private funds flowing into stemming the spread of HIV, tuberculosis, 2256 http://www.webology.org
malaria, avian influenza, and other major killers over the last five years actually helped capacity; affordable local health care; and access to nurses, social workers, and doctors needed to deal with an increasing rate of emerging infectious diseases. Instead, as Council on Foreign Relations Senior Fellow in Global Health Laurie Garrett argues, “The efforts this money is paying for are largely uncoordinated and directed mostly at specific high-profile diseases—rather than at public health in general.”31

The Statistical Package for the social science program (SPSS 20.0) will be used after collecting the returned questionnaires; the data will be edited to exclude the empty responses. Subsequently, the data are to be entered, categorised, coded, and analysed. This section presents the survey findings and the results of the statistical analysis. It includes an overall factor analysis, which is followed by the results of the reliability test on the data. The results of the hypothesis testing are then summarised.

A total of 500 sets of questionnaires were distributed to the users of ICT controlling epidemic size system in Iraq. The drop and pick technique method was used to distribute and collect the questionnaires. Therefore, by using a simple random sampling method, a list of names of ICT CONTROLLING EPIDEMIC SIZE SYSTEM users was not needed once the population was chosen randomly. Five hundred questionnaires were distributed, and target number of questionnaires (sample size) that was needed was 394; however, 255 were returned, 225 questionnaires were not returned and 20 were rejected due to incompleteness and were unusable. Hence, 255 complete sets were used for the data analysis in this study, which gives a total response rate of 50.5%. Based on [15], a sample size of 100 is needed to sufficiently conduct the analysis.

A reliability test that is a variable or set of variables is a consistent measure when the result is repeated under the same conditions [15, 18]. Cronbach’s alpha will be used for internal consistency by checking the components of the questionnaire against each other [19]. In other words, the reliability of the measures is an indication of the consistency and stability with the same instrument measures, and concepts to assess the goodness of a measure [20]. Items that have a high reliability measurement will be those that have a Cronbach’s alpha close to 1.

To ensure the measurement of the reliability, the multiple statement of the intention to use ICT controlling epidemic size system in Iraq, the attitude toward using ICT controlling epidemic size system in Iraq, the perceived usefulness, the perceived ease of use, the perceived risk, the shared value, and the trust have been assessed with Cronbach’s alpha reliability test. Cronbach’s alpha value is 0.993; this value indicates a high measurement reliability for all of the variables,
which is in line with the statement of [21] that the desirable coefficient alpha is greater than 0.70. In other words, the constructs of this study are reliable because the measures that were used are above the lower limit of Cronbach’s alpha, > 0.70. Hala and her colleague provides a summary of Cronbach’s alpha for the constructs [22].

Factor analysis was conducted to analyse the goodness of the data. The data reduction analysis will help specify the small number of factors that explain most of the differences that are observed in a large number of variables. Factor analysis was used to test the independent variables (perceived usefulness (4 items), perceived ease of use (4 items), perceived risk (5 items)), the mediating variable (attitude toward ICT controlling epidemic size system services in Iraq (4 items)), the moderating variable (trust (5 items), shared value (3 items)), the dependent variable (intention to use ICT controlling epidemic size system (3 items)), and the user knowledge toward ICT controlling epidemic size system use completeness and its importance (13 items).

According to [21], factor loading is achieved when the value is equal to 0.50 or greater than 0.50 whereas cross loading is attained if the value is 0.35 or lower. The result of the factors analysis of this study is presented in the [22]. KMO and Bartlett’s test, which has a loading of 0.90 and above, was used to indicate whether the data is valid for performing factor analysis. According to Hair et al. (1998), KMO sampling adequacy is interpreted as follows: Marvelous is 90 or above 80, meritorious is 70 or above, middling is 60 or above, mediocre is 50 or above and finally, miserable is 50 and below. The results indicate that the Kaiser-Meyer-Olkin measure of sampling is 0.975, which is considered meritorious, and the Bartlett’s test of sphericity is significant at P<0.01 as illustrated in [22].

Principle axis factor analysis with varimax rotation was conducted to assess the underlying structure for the forty items that deal with the effectiveness of implementing ICT controlling epidemic size system in Iraq. After performing the rotation, three factors were generated based on the fact that the items were designed to index three constructs: perception, attitude and intention. The first factor accounted for 75.417% of the variance, the second factor accounted for 3.066%, and the third factor accounted for 2.458%. Clarifies the items and the factor loading for the rotated factors. It is crucial to note that if the loading is less than 0.40, it will be omitted for the sake of improving clarity. Consequently, only occupation and number of employee constituents were dropped as they have no loading values.
The first factor indexes attitude (attitude towards ICT controlling epidemic size system, Shared Value, Trust, and some User knowledge towards ICT controlling epidemic size system). The second factor indexes perception (perceived Usefulness, perceived Ease of Use, and perceived Risks). The third factor indexes intention (Intention to use ICT controlling epidemic size system) with strong and moderate loading as explained in [22].

Correlation analysis was used to determine the correlation between the variables, as shown in [22]. The first column shows the correlations of the perceived attitude with the intention, in which both were significantly correlated with the intention. As we observed before, predictors / independent variables are low to moderately correlate with one another.

The mediating analyses were verified to assure that they are free from any violations toward the assumptions of the least squares procedures that are used in multiple regression analyses. The rationale behind conducting diagnostic procedures is to ensure whether the errors in the prediction are the result of the absence of a relationship among the predictors of the two independent variables (perceived and attitude) and one dependent variable (intention). Therefore, the output provides the usual descriptive statistics for all three variables as shown in Table 1. Note that the N is 201 because 3 participants are missing a score on one or more variables. Multiple regressions use only the participants who have complete data for all of the variables.

Table 1. Descriptive statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intention</td>
<td>4.0467</td>
<td>2.35790</td>
<td>204</td>
</tr>
<tr>
<td>Attitude</td>
<td>3.0701</td>
<td>1.31711</td>
<td>204</td>
</tr>
<tr>
<td>Perceive</td>
<td>2.7933</td>
<td>1.14934</td>
<td>204</td>
</tr>
</tbody>
</table>

Moreover, the model 1 summary table indicated that the multiple correlation coefficient (R), using all the predictors simultaneously, is 0.68 (R2 =0.464) and the adjusted R2 is 0.43. These statistics mean that 43% of the variance in intention can be predicted from perception and attitude. The model 2 summery table showed that the multiple correlation coefficient (R), using all the predictors simultaneously, is 0.688 (R2 =0.473) and the adjusted R2 is 0.47. This indicates that 47% of the variance in attitude can be predicted from perception. Table 2 represents the model summary.
Table 3 presents the ANOVA test results which show that the first model of attitude and perception significantly predicts intention, $F (3, 201) = 14.240, p<0.001$. In addition, the second model of attitude significantly predicts perception, $F (3, 201) = 13.834, p<0.001$.

Table 3. ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Df</th>
<th>F</th>
<th>Sig*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>14.240</td>
<td>0.000</td>
</tr>
<tr>
<td>Regression</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>13.834</td>
<td>0.000</td>
</tr>
<tr>
<td>Regression</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>204</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*ANOVA test; P (sig) <0.05
Coefficients test which specifies the consistent beta coefficients that are inferred similarly to correlation coefficients or factor weights (Nancy et al., 2005) is crucial in this research. The t value and the Sig opposite each independent variable are fundamental to indicate whether the variable is considerably contributing to the equation for predicting math achievement from the whole set of predictors. Based on the results of the coefficients test, attitude and perception, in this study, are the only variables that are significantly contributing to the prediction. Therefore, if there is any deletion of the predictors because of their insignificance, it can affect the levels of significance for other predictors. Table 4 illustrates the coefficients value.

As a result, multiple regressions were conducted to determine the best linear combination of attitude and perception for predicting the test scores of intention in model 1; and attitude for predicting perception test scores in model 2. Attitude and perception have almost similar beta weights in predicting intention in model 1. The adjusted R squared value for model 1 was 0.43. This indicates that 43% of the variance in intention was explained by the model. This statistic is perceived to have a significant effect [23]. The adjusted R squared value for model 2 was 0.47. This designates that 47% of the variance in intention was explained by the model. According [24], this is a great effect.

The result of mediated regression analysis was useful in presenting the following graph which shows the regression coefficients with coefficients to indicate the effect of the IV (Perception...
and Attitude) on the DV (Intention) in both analyses. First, the DV (Intention) is regressed on the IV (Perception) in path c (0.189). The standardized regression coefficient (beta) was examined to determine the size and direction of the relationship. The results indicate the existence of a direct effect relationship that is significant $P< 0.001$. Second, the MV (Attitude) is regressed on the IV (Perception) in path a (0.250). The beta was examined for its size, direction and significance. The results show the existence of an indirect effect relationship that is significant $P= 0.006$. Third, the MV (Attitude) is regressed on the DV (Intention) in path b (0.195). The beta was examined for its size, direction and significance. The results indicate an indirect effect relationship that is significant $P= 0.012$. Based on these results, all the relationships are significant. Hence, the hypothesized MV (Attitude) can be perceived as fully mediating. Furthermore, the size of the indirect effect is calculated as a product of the direct effect of the IV (Perception) on the MV (Attitude) and the MV (Attitude) on the DV (Intention) as illustrated in Figure 1 above.

5. Discussion

Emerging infectious diseases such as influenza A/H1N1 serve as a chilling reminder of the stakes at play when trying to govern for sustainability in settings where system complexity is vast, uncertainties are chronic, and surprises are recurring. ICT controlling epidemic size system already play a key role in responding to these challenges. They facilitate the extraction and integration of early warnings, reduce the cost of information dissemination and coordination in networked settings, and help build institutional capacity to reduce human health risks.

This insight is of relevance not only for health care scientists and professionals but also for sustainability science and policy in general. As a result of emerging ICT controlling epidemic size system is not as costly and difficult as it once was. While this recent ICT is no panacea, it can support innovative ways to overcome a range of sustainability problems worsened by institutional segmentation; knowledge fragmentation; and a lack of coordination between public, private, and organizational actors. At best, it can further facilitate cross-sectoral collaboration among actors, network arrangements across levels of social organization, and global scientific cooperation on issues such as ecosystem service assessment and management, climate change modeling and policy, coastal management, ICT research,

In this study, it has been proven that perceived (group of variables) has a significant positive impact on the Attitude (group of variables), which is in line with previous studies [24, 25]. Thus, this finding supports the TAM model, which predicts the relationship between perceived and attitude. Therefore, it could be a deduced perception that using ICT controlling epidemic size system enhances the outcome of their services experience and would have a significant positive impact on their attitude for ICT controlling epidemic size system services [26, 27]. In other
words, this finding shows a significant positive relationship between cloud users’ perceptions of the benefits of using ICT controlling epidemic size system and their feelings toward using ICT controlling epidemic size system in Iraq. As a result, a cloud provider should be able to show the utility of using ICT controlling epidemic size system services because it has been revealed that perceived has a significant positive influence on attitude toward using ICT CONTROLLING EPIDEMIC SIZE SYSTEM. Indeed, this research obviously shows that consumers can be explained through their attitude, which encompasses their perceptions. Thus, positive feelings or higher attitude toward using ICT controlling epidemic size system could be made up by the perception of the perceived of using ICT controlling epidemic size system.

According to the Theory of Reasoned Action (TRA) [28], TAM [8] and the planned behaviour (TAB) [23], the attitude has a significant positive influence on behavioural intention. Accordingly, it has been hypothesised that the attitude toward using ICT controlling epidemic size system has a direct positive impact on the intention to use ICT controlling epidemic size system. In this study, it has been proven that the attitude toward using ICT controlling epidemic size system has a significant positive impact on the Intention to use ICT controlling epidemic size system. The explanation for this finding is obvious: once the positive feelings of attitude to use ICT controlling epidemic size system are high, cloud users would have a higher Intention to use ICT controlling epidemic size system. Thus, consumers can be explained through their Attitude, which is made up of perceptions. Indeed, attitude does appear to be a basis for studies that concern consumers’ behaviours. This finding reconfirms the role of attitude in predicting the Intention and, hence, supports the argument that this construct should continue to be used in the subsequent imperative for using cloud providers to develop a use of ICT controlling epidemic size system that can foster positive feelings toward performing ICT controlling epidemic size system services because this study highlights the vital role of attitude in the Intention to use ICT controlling epidemic size system services. The mediation effect of attitude toward using ICT controlling epidemic size system is between the independent dependent variable “Intention” (intention to use ICT controlling epidemic size system in Iraq).

However, it appears from the findings of this study that the mediation effect of attitude toward using ICT controlling epidemic size system has a significant influence on Intention and perceived. In this study, it has been found that the attitude is fully a mediation effect of the relationship between the independent variables “perceived” and the dependent variable “Intention”. In other words, a mediator variable is a variable that carries the impact of the independent variables to the dependent variable. This finding is in agreement with TRA [28], TAM [8], and TPB [23], which indicate the vital role of attitude as a mediator variable.
result reconfirms the role of the attitude as a mediator variable and, hence, supports the argument that this construct should continue to be used as a mediator variable in future TAM research.

6. Conclusion

This paper investigated the impacts of ICT controlling epidemic size system components reuse adoption on the developing countries. TAM has been employed as theoretical background. The purpose of this research is to extend TAM theory to the ICT controlling epidemic size system context. This extension is conducted through the use of perceived (perceived usefulness, perceived ease of use, and perceived risk) as independent variables that influence the attitude (attitude toward ICT controlling epidemic size system services in Iraq, shared values, and trust), as mediation variables, and Intention (intention to use ICT controlling epidemic size system services in Iraq), as the dependent variable. Thus, this research has extended TAM theory by incorporating additional significant factor-specific knowledge to the field of ICT controlling epidemic size system and also fills a gap in existing academic knowledge.

It has been found that perceived has a significant positive impact on the attitude toward using ICT controlling epidemic size system and Intention. Additionally, it has been shown that there is a direct positive impact on Intention and an indirect positive impact on Intention via attitude. In this paper, it has been found that attitude is a full mediation effect of the relationship between perceived and Intention. Based on these results, it is recommended that the ICT controlling epidemic size system in Iraq formulate their service strategies to prompt ICT controlling epidemic size system in the future using the following steps. First, the cloud vendor should be able to exhibit the perceived of ICT controlling epidemic size system. Second, it is also important for the vendor to develop an ICT controlling epidemic size system that could be able to foster positive feelings (Attitude) for the cloud user. Overall, the results of this study have contributed to the existing literature by highlighting that different perception and motivation variables (shared value and trust) can influence the attitude and Intention to use ICT controlling epidemic size system services. In another word, we found motivation variables (ethics, security, privacy, and trust) can be the higher concern from the user and can effect on their the attitude and Intention to use ICT controlling epidemic size system any services from here the results of this study will help us to provide good insights for a secure proposed model. Consequently, the findings of our exploratory study open a new horizon for proposing the ICT controlling epidemic size system.
References

http://www.webology.org