Sources And Mechanisms Of PTE Accumulation By Organic Matter

Fedash Anatoly Vladimirovich¹, Trinh Quoc Vinh (corresponding)², Sergey Yakutseny (corresponding)³

¹Gubkin Russian State University of Oil and Gas: Moscow, RU
²Gubkin Russian State University of Oil and Gas: Moscow, RU
³Gubkin Russian State University of Oil and Gas: Moscow, RU

Abstract

When considering the sources of PTE entering the composition of hydrocarbons, it is advisable to divide them into primary and secondary. The author considers as primary those of them that accumulated in the organic matter, which was the source of hydrocarbons, and as secondary - sources, the second hydrocarbons received from the host environment for the entire period of their ontogenesis. Consequently, the primary PTEs in hydrocarbons are considered to be genetically inherited hydrocarbons from the OM that generates them, and the secondary ones are those obtained from the time of the formation of oil and gas during their migration, accumulation and destruction.

Keywords: PTE, organic, hydrocarbon, composition

1. Introduction

In the European part of Russia, the residual fund of oil resources is dominated by oil with increased and high density, enriched with potentially toxic elements (PTE). The study and accounting of the levels of natural and technological enrichment of oil and gas feedstock PTE is able to prevent or reduce the negative impact on the natural environment. Availability of information on the composition and content of impurities biotoxicants in oil and gas raw materials - a necessary and sufficient condition for the development and application of protective measures at the stage of selecting technologies for extraction, processing and disposal oil and gas.

The paper presents related studies and Analysis of Sources and mechanisms of PTE accumulation by organic matter

Research questions:

Question 1: What are related researches and Analysis of Sources and mechanisms of PTE accumulation by organic matter?
2. **Methodology**

Authors have used qualitative and analytical methods, descriptive method for primary model, synthesis and discussion methods in this paper.

We also used historical materialism method.

3. **Main findings**

Analysis of problem:
Separation of the processes of income and accumulation or loss of PTE by hydrocarbons into two different stages is necessary, since these are two completely different temporal and physicochemical processes.

During the primary stage, OM enriched with PTE is formed. It includes lifelong accumulation of potential toxicants by biota together with the early stages of dia- and proto- catagenesis, when HC generation has not yet begun. Figure 1 "Distribution of chemical elements in the lithosphere and living matter" illustrates this process well.

The secondary stage begins with the generation of hydrocarbons from organic matter, includes primary and then secondary migration, covering the entire course of hydrocarbon ontogeny.

![Figure 1 - Distribution of chemical elements in the lithosphere and living matter](image)

I - in the body of a person weighing 70 кг; II - in the composition of the lithosphere; III - bacteria; IV - land plants; V - land animals; VI - marine animals; VII - algae. The concentration of elements on a logarithmic scale.

It should also be noted the differences in the state of knowledge of these processes. The primary processes and scales of accumulation are more substantiated and studied, the secondary ones are
somewhat less. The latter, unfortunately, is objective, since the course of hydrocarbon ontogeny is a predictable rather than a studied process.

Therefore, most often conclusions have to be drawn by solving an inverse rather than a direct problem, i.e. on the basis of objective data on the content and composition of PTE in hydrocarbons, to decide on the possible sources of their entry. The same problem is encountered in mining geology and in all other branches of knowledge that are combined in the natural, and not the exact sciences.

Under lifetime accumulation of PTEs by biological objects, we mean those quantities that enter through the food, air, and other physiological chains both to meet the functional needs of organisms and to harm them in conditions of their abnormal concentrations in the environment.

In Figure above, for clarity, PTE clarks are combined in a variety of objects and environments. Land plants are enriched in V, Cr, Co, and Ni by an order of magnitude and more compared to terrestrial fauna. But Zn, Cd and Hg are concentrated by terrestrial animals to a greater extent than by land flora. The accumulative capacity of PTEs by the ocean fauna has too large a range of differences, but some similarity with the land fauna is nevertheless observed. V, Cr, Co, Ni, Pb and Cu are greater in ocean plants than in marine animals. Based on these and other data, S.G. Neruchev calculated the biota concentration coefficients of various elements relative to the hydrosphere, including potential biotoxicants. The latter are characterized by surprisingly high biophilicity. In particular, compared with the hydrosphere in biota, Cr and Ge can be concentrated 10^4 times more, V and Pb $10^3 - 10^4$, a Zn, Cu, Ni, As, Co, U, Hg and Ra are $10^2 - 10^3$ times more than in sea waters. The biophilicity of the majority of toxoelements is exactly the criterion of forced toxicity, the possibility of which is pointed out in study. "Biological activity of natural hydrocarbons and associated potentially toxic components-impurities".

4. Discussion and conclusion

Biological organisms living in the natural environment have not created the time of evolutionary development of defense mechanisms against elevated levels alien to the biosphere concentrations of metal salts and other PTEs massively entering the biosphere in the 20th-21st century.

Toxicants come along with oil and gas extracted from the bowels. Moreover, at high-temperature exposure in the process of processing and disposal of hydrocarbon Raw impurities are converted into a free elemental form. As a result, in the surface environment there are unusual biological contacts.

In this section, we consider only the primary sources of PTE accumulation in organic matter. Secondary, i.e. sources of income and accumulation of PTE by hydrocarbons will be assessed in study. “Processes of secondary concentration of PTE by hydrocarbons during their ontogenesis”, after characterizing the PTE content in oil.

The primary accumulation of biotoxicants by organic matter begins with their lifetime entry into the biota and continues during the processes of dia- and catagenesis up to the stage of hydrocarbon generation. It is difficult to correctly separate the two stages of this primary process, since their intensive lifetime accumulation by biota usually occurs in an anomalous geochemical environment, and this anomaly is expressed not only in living matter, but also in the rocks, soils and waters in which it lived. Dying biota in a reducing environment favorable for its preservation
continues to absorb the same elements from the same environment already in the form of OM. This process of unity of mass destruction of organic matter in a medium enriched with uranium, with the formation of oil and gas source strata, is very well shown by S.G. Neruchev in his work "Uranus and life in the history of the Earth". For the problem we are considering, it is important to assess the lifetime accumulation of biota toxicants, since these processes continue to this day, they are still little studied.

Acknowledgement

Thank you editors, friends to assist this publishing

Conflicts of interest

There is no conflict of interest

References

Beloglazov I et al. (2020). The concept of digital twins for tech operator training simulator design for mining and processing industry, Eurasian Mining, 3.

DOI: 10.17580/em.2020.02.12

DOI: 10.3389/feart.2022.828005

Z Tučková et al. (2021). Factors to enhance tourist’s ecotourism loyalty, an empirical study in Viet Nam, Webology, 18

ES Dongul et al. (2021). Language teaching application to English students at master's grade levels on history and macroeconomic-banking management courses in universities and colleges, Journal of Language and Linguistic Studies 17 (3), [1457]-1468

G Shen, J Manafian et al. (2022). Abundant soliton wave solutions and the linear superposition principle for generalized (3+ 1)-D nonlinear wave equation in liquid with gas bubbles by bilinear analysis, Results in Physics 32, 105066

HTH et al. (2020). The quantified analysis of causes of market risk fluctuations in the group of construction, real estate and construction material companies in Vietnam during and after the crisis, WSEAS Transactions on Environment and Development 16, 189-197

I Patra et al. (2022). Toxic effects on enzymatic activity, gene expression and histopathological biomarkers in organisms exposed to microplastics and nanoplastics: a review, Environmental Sciences Europe 34 (1), 1-17

LTVN et al. (2021). Reforming specialized inspection procedures to improve business environment in Vietnam for trade facilitation implementation, Management 25 (1)

LTH et al. (2021). Identifying learners’ behavior from videos affects teaching methods of lecturers in Universities, Design Engineering, 11146-11157

M Fannakhosrow et al. (2022). A Comparative Study of Information and Communication Technology (ICT)-Based and Conventional Methods of Instruction on Learners’ Academic Enthusiasm for L2 Learning, Education Research International 2022

http://www.webology.org
NCT et al. (2020). A Business Model for Producing Clean Energy in Developing Countries, WSEAS Transactions on Business and Economics 17, 75-84

NTHL et al. (2021). Developing students' mathematical competence through equipping them with necessary knowledge about metacognition-and activities in teaching mathematics in secondary school, Laplage em Revista 7 (3B), 24-35

NTPN et al. (2021). RELATIONSHIP BETWEEN COMPETITOR-BASED MARKETING MIX STRATEGIES AND PRODUCTION ACTIVITIES IN MANUFACTURING AND RENEWABLE ENERGY COMPANIES. Advances in Mechanics 9 (3), 1367-1378

NR Khalil, K Le, AB Mahdi, L Djuraeva. (2022). Religious beliefs and work conscience of Muslim nurses in Iraq during the COVID-19 pandemic, HTS Theological Studies 78 (4), 1-6

PMD et al. (2020). COMPARATIVE CHINA CORPORATE GOVERNANCE STANDARDS AFTER FINANCIAL CRISIS, CORPORATE SCANDALS AND MANIPULATION, Journal of security & sustainability issues 9 (3)

S Gwożdziewicz et al. (2021). Human machine interaction and meanings of machine learning-a case of hand posture recognition from wrist-worn camera, Des Eng (Toronto) 7, 11174-11187

S Chupradit, I Raya et al. (2021). Role of Glass Composition on Mechanical Properties of Shape Memory Alloy-Metallic Glass Composites, Advances in Materials Science and Engineering 2021

S Chupradit et al. (2022). Avaliações agrobiológicas de variedades de uvas recém-introduzidas sob as condições climáticas do sul do Cazaquistão, Brazilian Journal of Biology 84

TTH Ha et al. (2019). Modern corporate governance standards and role of auditing-cases in some Western European countries after financial crisis, corporate scandals and manipulation, International Journal of Entrepreneurship 23 (1S)

THL, S Gwożdziewicz et al. (2021). Human machine interaction and meanings of machine learning-a case of hand posture recognition from wrist-worn camera, Des Eng (Toronto) 7, 11174-11187
Tynkkynen (2019). The climate is changing Russia: from a hydrocarbon to an ecological culture, Social and Political Science 2019. DOI: https://doi.org/10.4337/9781788978606.00012

Z Wang, M Akhavan, MNI Kashkouli et al. (2022). Sustainable wastewater management from shale oil production wells: emerging opportunities and barriers, Applied Water Science 12 (7), 1-6